

CERES meeting October 22-26th

Karouche Nadia: CNES chef de projet Megha-Tropiques

CERES meeting: October 21-26th 2012

MEGHA –TROPIQUES is a scientific mission dedicated to the study of the atmospheric water cycles, energy exchanges and convective systems in the inter-tropical belt

MEGHA -TROPIQUES is a joint ISRO/CNES program based on the development of one unique satellite launched by PSLV in iNDIA

Key interest: inclined orbit 20° wrt to equator and altitude 865,5Km

MEGHA-TROPIQUES PAYLOADS

SAPHIR

SCARAB

MARFEQ/MADRAS

Bus: IRS from ISRO

Payload: 4 payloads

•MADRAS (CNES/ISRO)

•SAPHIR (CNES)

•SCARAB (CNES)

•GPS-ROSA (ISRO)

• Mass: 1 ton

Power: 694 Watts

•Life time spec : 3

years

● Fuel > 5 years

Launch in October 2011

MEGHA-TROPIQUES satellite was launched Octobre 12th 2011 at 11Hours local time (5H30 UT) by indian PSLV launcher from SRIHARIKOTA in INDIA

Launch was successful and orbit nominal

MEGHA - TROPIQUES

CNES Contribution: SCARAB

Instrument devoted to the Measurement of outgoing radiative fluxes at the top of the atmosphere

SCARAB Electronic module:

MEGHA-TROPIQUES

SCARAB estimates:

the solar reflected fluxes & the long wave emitted flux of the Earth/Atmosphere.

Channels spectral responses

2 broadband channels

- short wave (up to 4 mm) to measure direct
 Solar reflection
- Total channel to measure both direct Solar reflection and earth/atmosphere emitted radiation
- 2 Visible and Infrared windows channels (auxiliary narrow channels
- To permit scene identification and comparison with geostationary satellites

MEGHA-TROPIQUES

SCARAB CHANNEL REQUIREMENTS

Channel	Wave length	Signal dynamics	Noise
Sc 1 -Visible	0,5 to 0,7 μm	120 W.m ² .sr ⁻¹	< 1 W.m ² .sr ⁻¹
Sc 2 - Solar	0,2 to 4 μm	425 W.m ² .sr ⁻¹	$< 0.5 \text{ W.m}^2.\text{sr}^{-1}$
Sc3 - Total	0,2 to 200 μm	500 W.m ² .sr ⁻¹	$< 0.5 \text{ W.m}^2.\text{sr}^{-1}$
Sc 4 - IR Window	10,5 to 12,5 μm	30 W.m ² .sr ⁻¹	$< 0.5 \text{ W.m}^2.\text{sr}^{-1}$

- ⇒ Main channels: Solar channel Sc2 and Total Sc3
- ⇒ Sc1 (visible)and Sc4 (IR)are used for scene identification and for compatibility with operational satellites : absolute accuracy
- ⇒ Longwave irradiance is calculated from the difference between Sc3 and Sc2
 - \Rightarrow Channel 5 : LW = Channel 3 A * Channel 2 => Thermal energy
 - ⇒ Channel 5 is a synthetic channel

SCARAB is a cross track scanning radiometer

Main Requirements

- ■Scan angle coverage : ±49°
- Footprint at Nadir is 41Km
- Swath is about 2240 Km
- •Location requirement : 5km
- **■**Co-registration for C2/C3 : 98%

SCARAB Pixel pattern on ground

Centre of pixel 1: -48.91°

Centre of pixel 51: +48.91°

	At Nadir	Pixel 0 and N°50
Pixel size diagonal across track	58,82 Km	192,53 Km
Pixel size diagonal along track	58,82 Km	99, 46 Km

Instrument General Principle

- 4 Channels based on 4 identical telescopes focusing radiation on 4 pyroelectric detectors located at the prime focus of a spherical aluminum mirror
- The 4 channels are mounted on rotating scan support to realize cross track scanning
- Channel 1, 2 and 4 are equipped with filters
 - » Channel 1 and 4: filters are mounted on the channel
 - » Channel 2: filter is implemented on filter wheel
- A filter wheel is implemented to enable filters to be moved in front of channel 2 (nominal mode) or in front of channel 2 and 3 (calibration modes)

Instrument General Principle

- Detectors being sensitive to modulated energy, mechanical choppers are used to measure alternately the signal coming from earth and signal coming from internal blackbody reference
- A calibration Unit, composed of 3 blackbodies and a lamp is dedicated to in flight gain calibration
- During each scan period, a space view measurement is performed to provide a reference
- Acquisition pattern in nominal mode is composed of 4 phases : constant speed for earth acquisition, stop on deep space, acceleration and deceleration on the remaining period
- Total period or a scan = 6 seconds

INSTRUMENT MODES

Nominal: Solar Filter is set on channel 2 and no filter on total channel

: acquisition pattern with stop on space view channel2,3,4 and internal reference for channel 1

Solar Mode - Mode MS: Filter wheel is oriented in order to set 2 identical solar filters on channel 2 and channel 3

Total mode – Mode MT: Filter wheel is oriented such as no filter are located in front of channel 2 and 3

Mode CAL C: measurements of blackbodies and lamp are acquired – These measurements are used for gain calibration

First switch ON:

Switch ON in stand by mode October 13th puis 3 semaines d'attente Switch to nominal mode November 4th 2011,

Nominal performance since launch

C1: Visible

C2: Solar

C4: Infrared

SCARAB: L1 data processing

Products generated from CNES algorithms Specifications, and disseminated from ISRO mission center

Standard Product: Day-wise Product: Latency – 6 hours typical

Near Real Time Product: Dump-wise Product: Latency - 3hours 30

Product L1A:

51 pixels in scan line geometry

with Radiometric corrections

time tagged - Geolocated (including geometric corrections)

Product L1A2

Same à L1A plus better registration of channels with reference to channel 2 by interpolation

SCARAB: L1 data processing

Product L1A3: collocated SCARAB data with MADRAS

Projection of scarab information ON MADRAS 89GHz channel geometry (conical scan)

Product L1B: Projection on ISRO Grid static grid along the orbits

Data dissemination

- Products availability at L1 level in ISRO MOSDAC and ICARE centre Lille was delayed due to delay in data processing development
- July 26th 2012: L1 A dump product disseminated in routine mode
- September 18th 2012 : L1A and L1A2 dump products disseminated in routine mode
- > Including some improvement in location processing
- Reprocessing of One year data going on, in ISRO with the objective to be disseminated by October End 2012

